# ZERO VALENT IRON PILOT STUDY

Jeff Dale PROJECT LOCATION:

Naval Air Warfare Center Trenton, (Ewing Township) NJ

# Project Goal

Hot Spot Ground Water Treatment

### Base Description

- Jet Engine Test Facility
- Trichloroethylene (TCE) used as heat exchange fluid
- 25,000 gallon system
- numerous surface spills
- Clay over fractured sedimentary bedrock
- DNAPL Strongly suspected, but never confirmed

# Regulatory Framework

- non-NPL
- NJDEP Lead Regulator
- Good relationship with BCT
- Good community relations
- Closed under BRAC 93
- Public sale in late 98

## Pilot Site Description 1996

- Monitoring Well 36BR
- 136 ft deep, low yield
- up to 8,900 ppm TCE
- Consistently300-400 ppm
- Well is adjacent to Pump and Treat Building
- Pump and Treat oversized for future expansion
- Plant has operator and field GC

## Pilot Study Background

- Regulators suggested hot spot treatment
- Contaminants at very high levels
- NorthDiv in house literature search for technologies that could treat this hot spot from 100 ppm to 100 ppb
- Zero valent Iron showed promise at Waterloo

### Zero Valent Iron

- Iron catalyzes a reaction to dechlorinate compounds
- Iron donates electron
- Research stage, with few implementations
- Iron is basically foundry scrap

### Literature Review

- NFESC provided copies of 50 relevant journal articles for review
- "Back of Envelope" Design scaled up from published data
- Need 188 kg of iron (400 lbs)

### Phase 1 mid 1997

- NorthDiv tasked Foster Wheeler to implement
- Iron from Coast Guard site in NC
- Bladder pump in Well 36BR
- Above grade pipe to building
- 1 gpm initial Q

### Phase 1 Results

- Not very promising, 10-40 % removal
- Lowered Q to 0.05 gpm, 25-80% removal
- Reviewed Design with new data on iron reaction rates
- Plant undersized

#### Waterloo Connection

- Met staff of EnviroMetal Technologies at Waterloo
- EMT provides consulting services for in or exsitu reactive media
- Consulting for Coast Guard wall in NC
- Also consulting for EPA SITE in Wayne NJ
- Utilized software models of reaction rates, confirmed sizing problem
- Proposed using Nickel plated iron in parallel with Wayne NJ SITE

### Phase 2 late 1997

- Obtained Nickel-plated Iron in 11/97 \$2500/ton
- Restart 12/97 at 0.05 gpm

### Phase 2 con't

- 99+% removal
- 90 day study without problem
- Pilot plant shut down for Plant upgrade for final remedy
- Total TCE removal of 3.2+ pounds
- Well 36 BR stabilizing below 250 ppm

#### **WELL 36 BR IRON FILINGS PILOT**



#### Cost

- Phase 1...\$25,000
  Phase 2...\$25,000
- Average of \$16,000/pound
- Includes extra lab work for pilot study
- Compare with the ground water treatment plant at the base
  - 12 gpm at 140 ppm
  - \$4,000,000 for 5000 pounds TCE
  - or \$800/pound

#### **Future**

- Nickel Iron Reactor to continue use indefinitely
  - Continue Mass Removal
  - Evaluate Long term use of Nickel doped Iron
- Cost per pound of contaminant will continue to drop
- Low operational cost

### Summary

- Mass removal
- Successfully treated hot spot
- Demonstrated an emerging technology
  - Regular Zero valent Iron
  - Nickel Enhanced Iron





